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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Many-particle systems VII. Angular momenta and 
an improved lower bound: an approach towards 
shell theory 

R. J. M. CARRt and H. R. POSTS: 
t Department of Mathematics, Bedford College, University of London, 
England 
$ Department of History and Philosophy of Science, Chelsea College, University 
of London, England 
MS.  receiaed 29th January 1971 

Abstract. The shell model previously developed by Carr and Post 
consisting of strictly independent particles is shown to provide lower bounds 
to the energies of any N-fermion system for states of each angular momentum 
separately. An improved lower-bound shell model retaining antisymmetry in 
all A’ particles is derived, and applied to Hooke’s law, inverse square, rectangular 
well, and exponential interactions. Upper bounds to the deviations of our 
model energy values from the exact values are given. An approach to shell 
theory is sketched. 

1. Introduction 
In  this paper we prove that the method introduced in paper 1’1 (Carr and Post 

1968)f may be used to establish a lower energy bound for states of any given angular 
momentum separately. This is a further step towards shell theory, whose main 
success lies in the prediction of (or at least the exclusion of certain values from a set of 
values for) the angular momenta of ground states for successive numbers cf nucleons, 
rather than in the prediction of energies (see Love11 1959). 

On the basis of paper VI we may assert that the binding energy of the ground 
state of an N-nucleon system (assuming any given pair interaction) is not greater than 
the value for our corresponding shell model (which is easily calculated, our shell 
model being a strict independent particle model). The ground state of our model will, 
of course, have a definite angular momentum, or degenerate set of angular momenta. 
We have not proved that these values are the values for the ground state of the actual 
system. T o  do this, we have to establish (i) a lower bound for the energy of states of 
other angular momentum and (ii) an upper bound for the ground state. If (ii) is lower 
than (i), the other angular momentum is excluded from the ground state. 

(i) is established by the proof in $ 2 .  The calculation of upper bounds is a 
straightforward, though sometimes tedious, procedure. I n  many cases we have found 
upper bounds for the ground state reasonably close to our (HIP model) lower bound. 
The  possible ‘error’ in our model value, thus calculated, may be reduced further by 
improving our lower bound model as in 5 3.  In  so far as we may ignore the ‘error’ in 
our model (to be precise: in so far as the difference in ‘errors’ is smaller than the 
spacing between model levels of different angular momenta) our model provides the 
basis for a shell theory of angular momenta. 

Post (1953), Post (1956), Post (1962), Hall and Post (1967), and Hall (1967b) will be 
referred to as papers I, 11, 111, IV and V, respectively. We call the lower-bound model 
introduced in paper I1 the OP (one particle) model and that of paper VI the HIP (heavy 
independent particle) model. 

665 
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2. Angular momentum 

of N fermions in three dimensions. The  Hamiltonian is 
We continue the study commenced in paper VI, of a translation invariant system 

where m is the mass of any particle, and the ith particle has the position vector r , .  
Suppose the exact energy eigenvalues are Ei, i = 1, 2, 3, ..., with corresponding 

eigenstates Y,, such that HY, = E{Y,. Some of the E, may be equal. The lower 
bound shell model of paper VI has the Hamiltonian 

Let the eigenvalues for this system be 6, with eigenstates Qj,  such that A?@j = b,@,; 
j = 1, 2, 3, ... . Again some of the 6, may be degenerate. 

We examine the internal angular momentum, for the exact problem and the lower 
bound shell model. For the exact problem the total angular momentum may be 
expressed by 

N c ri X P i *  
I = 1  

The internal angular momentum is translation invariant and depends on 2 N - 2  
vector variables; u e  denote it by L.  If 

L = (h, L2, L3) 

L2Y, = Z(Z+ 1)h2Yi 
L,'€', = m,hY, 

then 
z = 0 ,  1 ,2 ,  ... 

m, = 0 ,  & 1, k 2 ,  '..) &Z, 
The angular momentum for the lower bound shell model 3 depends on the same 
number of vector variables. If 9 = (Yl, 2Y2, Y3),  then 

9 2 Q l  = 1(1+ l )hW, ,  z = 0 , 1 , 2 ,  ... 
mE = 0 ,  5 1 ,  & 2,  ..., ~f: 1. g3@, = m,hQj 

For all Cartesian coordinate systems the position and momentum coordinates 
p , ,  qt are related by the correspondence p ,  = - i#iVqi, that is, p ,  and q1 are mutually 
covariant. I n  paper VI the mass of particle 1 enters only implicitly via the momentum. 
The  quantities p ,  x q1 are therefore formally independent of the particular choice of 
coordinates when we change the mass of particle 1 and thus the internal angular 
momentum in the exact problem is formally identical with the total angular momentum 
for the lower bound shell model. Since moreover the commutation rules in the two 
problems are the same we have complete identity?. 

Let 

The change of coordinates given by (3) is a point transformation and is therefore canonical. 
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such that for m, = m, H(m,) is the same Hamiltonian as that given by (1). In  paper VI 
it was shown that increasing the mass m, in the expectation value (Yi, H[ml)Yi) ,  while 
retaining the same function Y j ,  lowers the expectation value algebraically, that is 

Ei = Pt, H(m,)Y’i)mi=m 2 (yt, H(ml)yi)ml>m* (2) 

We introduce the relative coordinates pi, i = 1, 2,  ..., N of paper VI (see (5)). 

miri + cy= mri p, = -- - 
A4 

centre of mass coordinate 

where 1iCI is the total mass 
17M = m, + ( N -  1)m. 

Let Yi (I,, r2, ..., r,v) Yi’(p2, ..., p N ) ;  p, does not enter since we have translation 
invariance. Ti’ is an eigenfunction of L2 and L,  with eigenvalues 1(Z + 1)?i2 and m,?i 
respectively. The inequality (2) becomes 

where 
Ei 2 (Yi’(~2, * * . ?  PN), H’(ml)m, > m  Y i ’ ( p 2 ,  PA,)) 

For m, -+ a, H’(m,) -+X. This gives 

Ei 2 (Yi’,&Ti’). (4) 

Since L and 9 are identical, ’I”$’ is an eigenfunction of 92 and s3 with eigenvalues 
Z(Z+ 1)h2 and m,h. However Yt’ is not (in general) an eigenstate of 2. This implies 
by the variational principle the existence of a lower bound shell model state CD, which 
is simultaneously an eigenstate of Y2,  2, and X ,  such that 

(Y,’, *Y%’) 2 (a?, 
where 

and 
X O j  = fFJCDJ 9 2 0 j  = Z(1+ 1)h2@., 

930j = m,h@,. 

Thus from (4) we have E,  2 d‘?. The angular momentum spectrum will usually be 
degenerate; for a given eigenvalue of 92 and 2, choosing the eigenstate which gives 
lowest energy with respect to 2 will ensure the truth of the above inequality. Hence 
for a state Yt of the exact problem with energy E,  and angular momentum quantum 
numbers I, m, the energy of the lowest state in the lower bound shell model having 
the same quantum numbers 1, m, will give a lower bound to E,. 
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3. An improved lower-bound antisymmetric in all N particles 
In  our usual notation, let the ground state of the exact problem be t,bo(rl, r2 ,  ..., rw). 

This will be a function of class L in the nomenclature of paper VI. The  ground state 
energy is given by E ,  = ($o, HI/,). 

We express this as the expectation value of a sum of N new Hamiltonians H , ;  
thus 

where 
h2 t i 2  N 

Hi = - - -A, ,+ 2 - --A + -- V(1 r i  - 1 2m 3 = 1  ’ 1 2m rg 2 
I # l  

That is we ‘pick out’ each of the particles 1, 2, 3, ..., N in turn. 

that 
Consider a typical term ($,, Ht$o) in the expression (5). I t  %as shown previously 

( $ 0 ,  Ht$o)m<=m 2 ( $ 0 ,  f w o ) m . > m .  

We express ($,, Ht$o) in terms of the relative coordinates pt  using (3), and let m, + cc 
on the right hand side of the inequality. In  the limit, p1 -+ r l ,  i = 1, 2, 3, ..., N a n d  
we have 

where 
( $ 0 ,  Ht$o)m<=m ($07 C%i’$O) (6) 

j # i  

N 
= C hj.  

j=1 
j # i  

(A neater proof of the paper VI lower bound result (HIP model) is obtained by noting 
that 

Eo = ( $ 0 ,  H l $ o ) m ,  = m 2 ( $ 0 ,  *1’$o) 

and minimizing the expectation value of &fl‘ with respect to functions of class NI.) 

i = 1,2,3, ..., N ,  which gives 
1 ”  
iv,=, 

Applying (6) to each term in (5)) we replace ($,,Hi$,) by ($o, Zi’$,); 

Eo - 2 ($O,*i‘$O) (7) 
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where 
N 

H ,  = 2 h,. 
i = l  

y!Jo will not (in general) be an eigenstate of H,. We minimize with respect to 
normalized functions obeying the usual boundary conditions of quantum mechanics 
and antisymmetric with respect to the interchange of any pair of particles 1 ,2 ,  3, ..., N. 
The inequality (7) is maintained or strengthened, giving 

where as is the lowest eigenstate of H, subject to the above constraints, a Slater 
determinant formed from the first N eigenstates of h,. In  the notation of paper VI 
h,gn(ri)  = ~ , ? , ( r ~ ) ,  the y n  are normalized to unity. 

The inequality (8) becomes 

We have an N-particle shell model retaining antispmmetry in all N particles, which 
we call the SHIP (symmetrized heavy independent particle) model. Comparing with 
the lower bound shell model of paper VI we see that the new SHIP shell model has the 
same energy levels but an extra particle, the whole multiplied by a factor ( N -  1)jN. 
Thus S > d always. 

The  angular momentum theorem of § 2 still applies to the new SHIP lower bound 
shell model. For the exact problem the internal angular momentum is given by 

N 

L = 2 r i x p i  

for states y!J which are translation invariant, whereas for the new SHIP shell model the 
angular momentum is given by 

i = l  

N 

i = l  

If we restrict ourselves to translation invariant states y!J of the exact problem, then the 
y!J are eigenstates of LS2 and L,,, and the result follows. Solutions of the exact problem 
which are not translation invariant have algebraically higher energy than corresponding 
translation invariant states and the theorem holds a fortioyi. 

4. Calculations with the improved lower bound (SHIP model) 

in one and three dimensions for simple central force interactions. 
We continue the policy of paper VI and examine spatially antisymmetric problems 

4.1. Hooke’s interaction 
Figure 1 compares the improved lower bound shell model SHIP ground state 

energy S with the exact ground state E,, for Vij = K * ( x ~ - x ? ) ~  and N = 2(1)20 in 



670 R. J.  M .  Caw and H. R. Post 

the case of one dimension. The  previous HIP lower bound d of paper VI is shown 
dotted. The  improved SHIP lower bound is given by S = N(N- l)(&N)1/2k’, where 
K’ = (A2/2m)1/2k. This new SHIP lower bound improves monotonically as N increases 
in the sense that (E,/S), > (EO/S)N+l  for all N .  

N 

Figure 1. N particles in one dimension interacting by Hooke’s forces 
(V,, = K2x, ,2) ,  E (in units of K’ = (fi2/2m)1‘2K) against N; Eo is the lowest 
spatially antisymmetric state of the exact problem; S is the new SHIP shell 

model lower bound; 6 is the HIP lower bound of paper VI. 

Figure 2 gives corresponding results for three dimensions, where Vij = k2(ri - r j )2 .  
The improved SHIP lower bound is given by 

( 3 + 5 + 5 + 5 +  ...) 
N- 1 SE- 

N 
to N terms in the bracket. Again ( E , / S ) ,  > (Eo /S )N+l  for all N 2 2, we have 
monotonic improvement as N increases. 

4.2. Square-well interaction 

state of the exact problem E,’ for two particles in one dimension, where 
Figure 3 compares the SHIP lower bound S’ with the lowest spatially antisymmetric 

1 x < l  vi, = - voj (5’) -- m=(,  * , I ’  
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Figure 2. N particles in three dimensions interacting by Hooke’s forces. E (in 
units of k’) against N ;  Eo is the exact solution; S is the new SHIP lower bound; 

t” is the previous HIP lower bound. 
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Figure 3. ‘Square well’ interaction in one dimension, two particles; 
E’ ( =  2mEu2/hZ) against V‘ ( = 2mV0az/h2) for lowest spatially antisymmetric 
states: Eo’ is the exact solution; S’ is the new SHIP lower bound; 8‘ is the 

previous HIP lower bound. 
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Energies are expressed in dimensionless quantities such that E’ = 2mEa2/h2 etc. The  
previous HIP lower bound 6‘ of paper VI is shown dotted. The  SHIP lower bound 
improves as we deepen the well in that E,/S increases as V’ increases. 

0 

- I O C  

E‘ 
-2oc  

-3C( 

3 

Figure 4. ‘Square well’ interaction in three dimensions, two particles. E‘ against 
V’ for lowest spatially antisymmetric states; E’ is the upper bound obtained by 
numerical minimization; S‘ is the new SHIP lower bound; 8‘ is the previous HIP 

lower bound. 

Corresponding results for three particles are shown in figure 4. In  this case E‘ 
is the upper bound described in paper VI, obtained by numerical minimization with 
a translation invariant and spatially antisymmetric trial function. EIS increases as 
V’ increases. 

The  quality of the SHIP lower bound S’ appears to be better for two particles in 
the sense that (E,/S), > (E/S) ,  for V’ = 10( 10)120. 4s  before in paper VI, we have 
failed to demonstrate improvement with increasing N in this case. 

For deep wells we compare our SHIP lower bound S’ with Ec‘, the ‘collapsed state’ 
upper bound given in paper VI. As V’ -+ CO, E,iS -+ 1 for all N .  

Figure 5 compares the ‘collapsed state’ upper bound E,‘ of paper VI for 
particles in three dimensions in the case of V’ = 200, with P’, a lower bound to S‘. 
T o  obtain Y’, lower bounds on the single particre shell model energies et’ were 
obtained by the method given in paper VI. We have monotonic improvement in the 
sense that ( E J Y ) ,  < (EC/P)N+l for N = 2(1)20 in this case. For V’ .+- CO, 
( E , / Y )  += 1 for all N. 

In  paper VI table 4 indicates that the upper bound E,‘ is poor. We expect 9‘ to be 
closer to the exact energy than Ec’. 
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Figure 5 .  'Square well' interaction in three dimensions, N particles; 
V' = 2mVoaz/Zi2 = 200; E' against N for lowest spatially antisymmetric states; 
Ec', collapsed state upper bound; Y', lower bound to the SHIP shell model energy 
5". The previous HIP lower bound lies close to 9' and is omitted for clarity. 

N 
h 
CD V '  

-50 - 
E' 

- I O C  - 
I t 8 J 
Figure 6. Exponential interaction in one dimension, two particles, 
E'( = 2mEa2/fi2) against V' ( = 2mV0u2/fi2) for lowest spatially antisymmetric 
states; Eo' is the exact solution; S' is the new SHIP lower bound; 8' is the previous 

HIP lower bound. 
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4.3. Exponential interaction 
Figure 6 compares the SHIP lower bound S' with the lowest spatially antisymmetric 

state of the exact problem E,' for two particles in one dimension, where 
Vij = - V o  exp( - ix t j l /a) .  The units of energy are the same as for the square-well 
interaction. The  previous HIP lower bound 8' of paper VI is shown dotted. We have 
improvement as the well deepens in the sense that E J S  increases with V'. 

Figure 7. Exponential interaction in one dimension, three particles, E' against V' 
for lowest spatially antisymmetric states; E' is the upper bound obtained by 
numerical minimization ; S' is the new SHIP lower bound ; 8' is the previous HIP 

low-er bound. 

Corresponding results for three particles are shown in figure 7. The upper bound 
E' is obtained by numerical minimization with a translation invariant and spatially 
antisymmetric trial function in paper VI. EIS increases as V' increases. 

The lower bound is better for three particles in that (E,/S),  < ( E / S ) ,  for 
V' = 10(10)120. For this case also we have improvement as N increases. 

4.4. Inaerse-square intevaction 
Table 1 compares the lower bounds S' and 8' with EL', the upper bound of 

Levy-Leblond (1969) for N = 2, 3, 4 in three dimensions when V a j  = - k/r t j .  On 
comparing the upper bound E,' with the exact solution E,' for two particles, the 
upper bound appears rather poor, and hence probably exaggerates unduly the error 
of the shell model energy for N = 3 and for N = 4. 

To obtain an explicit expression for the lower bound we follow the method used by 
Levy-Leblond and over fill the shell model levels to give closed shells for which 
energy bounds may easily be deduced. We obtain 

S' > 9' = -;1\7"3(A\7- 1 ) A ' Z  
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and 

For the upper bound 
- 1  

Again in the sense that (E/9’)x < (E/9’)hr+l we have monotonic improvement as N 
increases. 

Table 1 

llr = 2 N = 3 N = 4 

bound EL’ 0.00067 0 00305 0.00754 

EO? 0,0313 

Levy-Leblond upper 

Exact ground state 
- - 

SHIP shell model energy S’ 0.156 0.563 1.313 
HIP lower bound 8’ 0.25 0.703 1-50 
Lower bound 9’‘ 0.315 1,082 2-38 
Lower bound 9‘ 0.50 1.417 2.89 

Energy is in units of - kf2, where k‘ = 2mk/h2. 

For large N all the bounds become proportional to N“3. I t  is plausible to assume 
that the exact solution ‘sandwiched’ between EL’ and 9” has the same N-dependence. 

5. Accuracy of models and approach to shell theory 
4 s  explained in the introduction, a derivation of shell theory requires a relative 

location of the relevant actual energy levels to an accuracy greater than the spacing of 
these levels in the model. Apart from a determination of an upper estimate of the 
‘error’ of taking the various lower-bound models as actual values in the case of each 
individual interaction by a straightforward calculation of an upper bound, pessimistic 
estimates of the ‘errors’ corresponding to the OP and SHIP models may be obtained for 
any interaction in general from the following theorems respectively : 

(i) I n  the N-boson case we can immediately give the exact value to a stated 
accuracy for any Hamiltonian H :  

where e,  is the ground state energy of the equivalent one-particle problem 
corresponding to the one-particle wave function 9, as obtained by the OP method in 
paper 11, and e, is the expectation value of the equivalent one-particle Hamiltonian h 
using the Gaussian state function g (the normalized Hermite function of order zero). 

Thus we see that the deviation of the equivalent one-particle state function from 
the Gaussian form is a measure of the inaccuracy of this method (‘symmetry require- 
ment effect’). 

(ii) In  the N-fermion case, we may compare the lower bound obtained by the 
SHIP model, with an upper bound obtained as the expectation value of the true 
Hamiltonian of the problem, for the state function corresponding to the ‘empty shell’ 
model, that is, for the state function corresponding to Nparticles in shell states corres- 
ponding to the central interaction of the SHIP model. This latter (upper bound) 
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where 

is the Hamiltonian corresponding to an ‘atom’ of ‘nuclear charge’ NI2 with N non- 
interacting ‘electrons’. The  difference between the right hand side of (9) and (10) is 
the first order perturbation value of the potential energy in an atom of N ‘electrons’ 
and ‘nuclear charge’ N/2 .  This is a (pessimistic) measure of the inaccuracy of this 
method. For the HIP model see Post (1968). 

The pessimistic estimates of errors resulting from these techniques are in general 
too large to derive a shell theory. Shell theory would be established if we could 
show that in going from the two- to the N-particle case the difference in the errors in 
successive levels is not reversed to an amount greater than the level spacing in the shell. 

the SHIP shell 
model ground state S has precisely the same sequence of angular momenta with N 
as that found in the exact problem. This may be seen by comparing the SHIP shell 
model with the exact solution given in paper I. We have N particles in each case to 
fill the same sequence of single particle levels. 

This exact correspondence between the angular momenta of the model and the 
angular momenta of the exact ground states would hold generally if the specijic isotope 
shift (Hughes and Eckart 1930) were zero. We are in a sense increasing the mass of 
m e  particle in going from the exact problem to our lower bound shell model (at least 
in the case of the HIP model). 

I n  general all we require is that the levels corresponding to the lowest energies of 
different angular momenta do not cross as we change the mass of one (or all) particle(s). 
We do not have a general law supporting this required hypothesis. Familiar non- 
crossing rules relate to states of the same angular momentum. 

In  a later paper it will be shown that while our lower bound methods \+auld be 
expected to give poor estimates of actual values in the case of saturating interactions, 
the HIP and SHIP models can be applied to produce saturation. Indeed, it may be 
argued that certain types of saturation go hand-in-hand with shell formation: the 
cocktail of four parts of Majorana with one part of Wigner interaction saturates 
precisely because it reduces inter-shell interaction to zero. 

We have distinguished between shell theory, requiring a strict derivation, and the 
mere postulation of a shell model. We may further distinguish between ramified 
shell models, introducing spin-orbit coupling etc., and ‘bare’ shell models. It may 
be of interest to point out that the rule 

For interaction by Hooke’s forces in three dimensions ( V i j  = 

AT, 2 Ail+l 

where N I  is the number of states of angular momentum I below any arbitrary energy 
value, must hold not only for any two-particle system, but for any bare shell models 
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for which the 1, the angular momenta of the individual particle states, are defined at 
all (such as Feenberg and Hammack 1949), since for any such bare shell models the 
independent particle spectra are just superimposed, and the rule N L  2 N I + ,  is 
inherited. 

A more detailed sequence of levels is given by our theory (an example of a ‘bare’ 
shell theory) for any specific interaction. But unmodified ‘bare’ shell theory only 
yields unique total angular momenta for N corresponding to filled shells, or to such a 
number 5 I .  Additional correlation requirements, such as a form of an anti-Hund 
rule (for attractive interactions), possibly strengthened by some spin interactions, are 
necessary to yield unique angular momenta (destroying degeneracy) in the most 
general case. Even present-day ramified shell theory does not provide such predictions 
in general. 

However, we are not here interested in ramifications of ‘bare’ shell theory, or in 
the (straightforward) introduction of spin. We are concerned in the present paper 
to outline a derivation of a ‘bare’ shell theory, to explain why there are shells at all. 

6. Conclusion 
We have extended the HIP method of paper VI to give separate energy bounds & 

for states of any given angular momentum. A new shell model (SHIP) has been devised 
yielding an energy lower bound S,  which is always better than 8 for ground states. 
This new SHIP model also provides separate lower bounds for any given angular 
momentum. 

In  general more information may be obtained about angular momentum by 
considering both HIP and SHIP models. For a given N the scheme of single particle 
levels to be filled is the same in each case but for the HIP lower bound Q we have N- 1 
particles to assign, while for the SHIP lower bound S we have N particles. This often 
leads to a greater (or different) choice of allowed angular momentum values for the 
SHIP lower bound S ,  in which case B may yield additional information, depending on 
the particular level spacing of the problem. The  angular momentum for the two 
models is connected by the simple relation 

angular momentum for &,,, = angular momentum for S,v-l. 
For ground states the improvement in the lower bound when using the new SHIP 

shell model is moderate. The improvement appears to be greatest in situations where 
the previous HIP lower bound was poor, in particular for the case of small numbers of 
particles. The  real importance of the SHIP shell model is theoretical in that we now- 
have an N-particle shell model. This brings us closer both to the exact problem and 
to the shell theory of nuclear physics. The  new SHIP lower bound model already has 
the correct symmetry. The  states of the SHIP shell model are ‘ready made’ trial 
functions for the exact problem, the exact solution being a state of the same space. 
The method of error estimation given by Post (1968) becomes neater (see 5 5). We 
no longer have to ‘throw away’ one particle. 

Fermion lower bounds involving a sum over N - 1 energies have been devised by 
Fisher and Ruelle (1966), Calogero and hlarchioro (1969) and Hall (1967a), in 
increasing order of quality (F. Calogero 1968, private communication). The  new 
N-particle SHIP model lower bound S appears to be superior to all these for small 
numbers of particles, For large N all these lower bounds tend to the same limit. 

The  better known variational methods for obtaining lower bounds such as that 
by Temple (1928), require a knowledge of the first excited state of the exact problem. 
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Since this must be assumed, these methods do not in general yield lower bounds 
rigorously. 

For the nonsaturating interactions studied we observe the same general trend of 
improvement (ratio-wise) with increasing AT and V’ for the SHIP model as in the 
previous HIP lower bound shell model. Indeed there is a loose analogy between the 
effects of increasing V’ and N .  (For bosons these are identical.) We have found 
improvement with increasing V’ in all cases and expect an overall improvement with 
increasing N to hold generally for nonsaturating interactions. The apparent counter- 
example to this hypothesis in the case of interaction by square well forces in one 
dimension for N = 2 and 3 need not be serious as we should not expect monotonic 
improvement-consider the case of interaction in three dimensions by Hooke’s forces 
in paper VI (HIP model), where (Eo /€ ) ,  > (Eo/’8)Av-l except when N gives a closed 
shell for the exact problemt. Local fluctuations may be caused by a particular level 
spacing but will not affect the overall trend. 

In  all previous papers in this series we have explicitly made use of the principle 
that dropping a restriction lowers the energy or at least leaves it unaffected. We have 
not appealed to such a principle in 4 3. 
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